The Second Machine Age

Prof. Levy
Fromm Institute for Lifelong Learning
Spring Session 2018
The Second Machine Age

• Lecture 3 preview
 • Background – software
 • What is Artificial Intelligence (AI)?
 • History of AI
 • What AI is not / what deserves to be called AI
 • AI research areas
 • Big players in AI
 • Impact of AI (part 1)
The Second Machine Age

• **Background**

 • Software is instructions that execute in processors

 • How software is developed

 • How to program a process that “learns”
Computer logic

Output = \overline{ABC} + \overline{ABC} + \overline{AB} + \overline{ABC}
8085 microprocessor - 1976
Background technology

• **Software**

 • Machine-language instructions

 • Programming languages

 • Compiled into machine-language instructions

 • A compiler is another program for translating

• Programs often have “bugs”
Background technology

- **Software development** process (a human activity)
 - Write / edit “source code” in a high-level language
 - Compile source code (into machine instructions)
 - Test the code, find bugs
 - Rewrite / edit “source code” and repeat

- When it works OK, *integrate* it with other code
Sample source code (in C++) part 1

#include <CkMailMan.h>
#include <CkEmail.h>

void ChilkatSample(void)
{
 // Create a MailMan for the purpose
 // of unlocking the component.
 CkMailMan mailman;
 bool success = mailman.UnlockComponent("anything for 30-day trial");
 CkEmail email;
 // Adding attachments, HTML/plain-text bodies, etc can be done
 // in any order:
Sample source code (in C++) part 2

 // Add an attachment
 const char *contentType = email.addFileAttachment("hamlet.zip");
 if (email.get_LastMethodSuccess() != true) {
 std::cout << email.lastErrorText() << "\n"; return; }

 // Add some headers:
 email.put_Subject("This is a complex email");
 success = email.AddTo("Chilkat Support","support@chilkatsoft.com");
 email.put_From("Matt <matt@chilkatsoft.com>");

 // Add a plain-text body:
 success = email.AddPlainTextAlternativeBody("This is the plain-text body");

 // Add an image that will be embedded in the HTML body.
 const char *contentIdDude = email.addRelatedFile("dude.gif");
 if (email.get_LastMethodSuccess() != true) {
 std::cout << email.lastErrorText() << "\n"; return; }
 ...
Software design decisions

• Data representation
• Data structures
• **Algorithms**
• Modules
• Inputs & Outputs
• Testing / validation
 • Test data
 • Test results
Designing Software for AI

“Learning” algorithms

feedback from previous results

calculating the accuracy of results
History of Artificial Intelligence
History of Artificial Intelligence (1)

• Storytelling devices / ethical questions:
 • Mary Shelley – *Frankenstein* (1817/1823)
 • Karel Capek – *R.U.R* (1920/1921) – “Robot”
History of Artificial Intelligence (2)

• Storytelling devices / ethical questions:
 • Mary Shelley – Frankenstein (1817/1823)
 • Karel Capek – R.U.R (1920/1921) – “Robot”

• Formal logic & reasoning – philosophers, mathematicians
 • Turing & Church (1937)– a machine can simulate any mathematical deductive system using only 0 and 1 (and a “finite-state machine”)

History – Alan Turing

• Turing Machine

• Alan Turing 1912-1954

Turing Machine Model

- Are there computations that no “reasonable” computing machine can perform?
 - the machine should not store the answer to all possible problems
 - it should process information (execute instructions) at a finite speed
 - it is capable of performing a particular computation only if it can generate the answer in a finite number of steps
History – Alan Turing

- Turing Machine
 - https://youtu.be/E3keLeMwfHY
History – Alan Turing

• Turing Machine
 • Important result (from Turing & Church) –
 • some functions are not computable
History of Artificial Intelligence (3.1)

• Storytelling devices / ethical questions:
 • Mary Shelley – Frankenstein (1817/1823)
 • Karel Capek – R.U.R (1920/1921) – “Robot”

• Formal logic & reasoning – philosophers, mathematicians
 • Turing & Church – a machine can simulate any mathematical deductive system using only 0 and 1 (and a “finite-state machine”)

• Turing’s Test –
 • "if a human could not distinguish between responses from a machine and a human, the machine could be considered “intelligent"
History of Artificial Intelligence (3.2)

• Storytelling devices / ethical questions:
 • Mary Shelley – Frankenstein (1817/1823)
 • Karel Capek – R.U.R (1920/1921) – “Robot”

• Formal logic & reasoning – philosophers, mathematicians
 • Turing & Church – a machine can simulate any mathematical deductive system using only 0 and 1 (and a “finite-state machine”)

• Turing’s Test –
 • "if a human could not distinguish between responses from a machine and a human, the machine could be considered “intelligent”

• The Imitation Game
History of Artificial Intelligence (4)

• **AI research beginnings**

 • 1950 paper by Alan Turing – Computing Machinery and Intelligence

 • Can machines do what we can do?

 • 1956 – Allen Newell (CMU), Herbert Simon (CMU), John McCarthy (MIT), Marvin Minsky (MIT), Arthur Samuel (IBM)

 • 1959 – Art Samuel - checkers

 • 1961 – Frank Rosenblatt – “perceptron”

 • 1963 -- AI Labs founded at MIT & Stanford

 • ELIZA, checkers & chess, robots (Shaky), locomotion (vehicle)
History of Artificial Intelligence (5)

• **AI research**

 • in 1980s -- “AI Winter” for funding

 • No dramatic successes in AI applications

 • 2010s – AI is rescued by

 • Moore’s Law

 • Breakthrough algorithms

• Use of graphics processors for “machine learning” algorithms
Artificial Intelligence Research areas

- bioinformatics
- cognition
- computational geometry
- computer vision
- decision theory
- distributed systems
- game theory
- general game playing
- image processing
- information retrieval
- knowledge systems
- logic
- machine learning
- multi-agent systems
- natural language
- neural networks
- planning
- probabilistic inference
- sensor networks
- robotics
What deserves to be called AI? (part 1)

- **Pattern recognition** (faces, map features, radar blips & sonar echoes, ...)
- **Language**: speech to text, speech recognition, speech understanding
- **Language translation**
- **Human interaction**: “Turing’s Test”, Chatbots
- **Simulation**: artificial worlds; 3D modeling & design; engineering testing
- **Gaming**: Chess, Go, Jeopardy; game-playing bots
What deserves to be called AI? (part 2)

• **Recommendation engines** (Amazon, Netflix, ...)
• **Autonomous vehicles & aircraft** (drones/UAVs)
• **Robots**, industrial and domestic
• **Medical applications** – public health; clinical diagnoses; research aides
• **Virtual reality** applications
 • Jaron Lanier: *Dawn of the New Everything*
Who are the big players in AI?
Who are the big players in AI? (part 1)

• **Commercial**
 • Facebook
 • Google/Alphabet
 • Microsoft
 • IBM
 • Apple
 • Amazon
 • Nvidia
 • (OpenAI consortium)

• Baidu
• Alibaba
• Tencent
• Uber
• Tesla
Who are the big players in AI? (part 2)

• National
 • China
 • USA
 • France
 • Canada
 • U.K.
 • …

• Academic
 • MIT
 • CMU
 • Stanford
 • UC Berkeley
 • …
 • Waterloo
 • Toronto
 • …
 • Tsinghua
 • Peking
AI in 2018

• Artificial General Intelligence
 • IKEA furniture assembly?
 • Common sense?
 • the Singularity

• Impact of AI on employment and work
 • The jobs shift
To be considered in future lectures

• **Machine Learning** – software underlying “A.I.”

• AI for **autonomous vehicles**?