OK: Now we are ready to INTEGRATE !!!

OR ARE WE?

(Board)
Here’s a fun game: Given a function f, guess a function F such that $F’ = f$ and then check your answer to make sure its right.

Example: Let $f(x) = 5$. Can you guess a function F whose derivative is 5?

Of course you can; try $F(x) = 5x$. Check: $F’(x) = 5$.

Question: Is $F(x) = 5x$ the only function whose derivative is 5? What about $G(x) = 5x + 7$? Or $H(x) = 5x - \pi$?

Harder Example: Let $f(x) = 2x - 3$. Can you guess a function whose derivative is $2x - 3$?

How about $F(x) = x^2 - 3x$? Check: $F’(x) = 2x - 3$; OK, but once again, if C is ANY constant, then $G(x) = x^2 - 3x + C$ also works.
DEFINITION: Let f be a function. A function F is an **antiderivative** of f if $F^\prime = f$. If F is an antiderivative of f, we say that $F + C$, where C represents any constant, is the **general antiderivative** of f.

Clearly, any two functions that differ by a constant have equal derivatives. But the converse is also true!

EQUAL DERIVATIVES THEOREM: If $F^\prime(x) = G^\prime(x)$, then $G(x) = F(x) + C$ where C is some constant.

NOTE: I have hedged in the statement above; the real one involves open and closed intervals and continuity.

More Examples: Let $f(x) = 3x$. What now?

Right!! Let $F(x) = (3/2)x^2 + C$. Then $F^\prime(x) = 2(3/2)x = 3x$.
The last example can be generalized: If \(f(x) = ax^n \) and \(n \neq -1 \), then \(F(x) = \frac{a}{n+1}x^{n+1} + C \) is the general antiderivative of \(f \). If \(n = -1 \), then \(F(x) = a(\ln x) + C \).

1) If \(f(x) = 7x^3 - 4x^2 + x - 8 \), then

\[
F(x) = \left(\frac{7}{4}\right)x^4 - \left(\frac{4}{3}\right)x^3 + \left(\frac{1}{2}\right)x^2 - 8x + C
\]

is the general antiderivative of \(f \). CHECK!!

2) If \(f(x) = \sqrt{x} + 6/x \), first rewrite it with exponents:

\[
= x^{1/2} + 6x^{-1}
\]

Now use the above technique:

\[
F(x) = \frac{2}{3}x^{3/2} + 6 \ln x + C
\]

and CHECK!!

3) What if \(f(x) = e^{x/3} \)? Well, the exponential is its own derivative so let’s try \(F(x) = e^{x/3} \) and check.

Correct answer: \(F(x) = 3e^{x/3} + C \) CHECK!!
Antiderivatives are closely related to Integration. In fact, if \(f \) is a function, we often write

\[
\int f(x) \, dx
\]

which is read “the (indefinite) integral of \(f \) of \(x \) \(dx \)” to denote the general antiderivative of \(f \). So if \(F \) is any antiderivative of \(f \), we can write

\[
\int f(x) \, dx = F(x) + C
\]

For example,

\[
\int (2x + 4) \, dx = x^2 + 4x + C \quad \text{(CHECK!!)} \quad \text{and}
\]

\[
\int (x - e^{3x} - \frac{1}{x}) \, dx = \frac{1}{2}x^2 - \frac{1}{3}e^{3x} - \ln x + C
\]
A Short Table of Integrals

\[\int a \ f(x) \ dx = a \int f(x) \ dx \]

\[\int [f(x) + g(x)] \ dx = \int f(x) \ dx + \int g(x) \ dx \]

If \(n \neq -1 \), then \(\int ax^n \ dx = \left[\frac{a}{n + 1} \right]x^{n + 1} + C \)

If \(n = -1 \), then \(\int (a/x) \ dx = a \ln x + C \)

\[\int e^{ax} \ dx = \left(\frac{1}{a} \right)e^{ax} + C \]
Any equation that involves the derivative of an unknown function is called a **differential equation**. Any function that satisfies the equation is a **solution**. To **solve** a differential equation means to find *all* solutions and the set of all solutions is called the **general solution**.

Example. Solve the equation \(y' = \frac{1}{x^2} + \sqrt{x} \). This is of the form \(y' = f(x) \). The solution, of course, is the general antiderivative of \(f \); in this case,

\[
f(x) = \frac{1}{x^2} + \sqrt{x} = x^{-2} + x^{1/2}.
\]

Therefore, \(y = -x^{-1} + \left(\frac{2}{3}\right)x^{3/2} + C \) is the answer. CHECK!
An Application to Motion
Problem: A projectile is fired straight up with an initial velocity of 256 ft/sec. How high will it rise and when will it strike the ground?

Solution: Let s be its position function; that is, $s(t)$ is its position at time t. Then $v = s'(t)$ is its velocity function and $a = v'(t)$ is its acceleration function. We take $s(0) = 0$ and the positive direction of motion to be up. Thus gravity works against the motion (slowing down the projectile) so the acceleration due to gravity is the Newton Constant -32. That is, $a = v'(t) = -32$ so $v = -32t + C$. We are given that $v(0) = 256$ so $256 = -32(0) + C$ and it follows that $C = 256$. Now we know that $v = s'(t) = -32t + 256$ so $s(t) = -16t^2 + 256t + C$. Since $s(0) = 0$, we see that $C = 0$ and $s(t) = -16t^2 + 256t$.
So we have all the information we need:

\[a(t) = -32 \]
\[v(t) = -32t + 256 \quad \text{and} \]
\[s(t) = -16t^2 + 256t \]

1) How high will it rise? At the highest point, the velocity is zero. So set \(0 = v(t) = -32t + 256\) and solve: \(t = 8\). It takes 8 seconds to reach its maximum height which is

\[
s(8) = -16(8)^2 + 256(8)
= -1024 + 2048 = 1024 \text{ ft}
\]

2) When will it strike the ground? We can reason two ways: a) It takes 8 seconds to go up, so it takes 8 seconds to come down. Ans: In 16 seconds. Or b) When it strikes the ground, \(s(t) = 0\); so set \(s = 0\) and solve:

\[
0 = s(t) = -16t^2 + 256t = t(-16t + 256) \quad \text{so} \quad t = 0 \text{ or } 16
\]
Some Problems

1) A bullet is shot straight up with a muzzle velocity of 320 ft/sec. How high will it rise and when will it strike the ground?

2) Jim is driving his car at 60mph and suddenly applies the brakes which cause a deceleration of 7200 mi/hr/hr (i.e., an acceleration of -7200 mi/hr/hr.) GUESS how long it will take to stop and how far he will travel. Then check your estimate.
3) A landing jet has a velocity of 300mph = (440ft/sec). If a deceleration of 40 ft/sec/sec is applied immediately upon landing, what is the minimum length of runway needed to bring the plane down to the manageable speed of 40ft/sec?

4) A calculus student drops a small stone from the roof of a building and hears the sound of impact 3 seconds later. She then calculates the height of the building. Can you? (Note: Sound travels about 1,100 ft/sec in air)

5) A car is traveling 50 mph in a 25 mph zone. An officer in a patrol car starts from rest as the speeder passes him and accelerates at the rate of 5 mi/hr/sec. How long does it take the officer to catch the speeder?

Answers: 1) 1600 ft.; 20 sec. 2) 30 sec.; 1/4 mile. 3) 2400ft 4) 133 ft. 5) 20 sec.
Harder Example: Solve \(y' = 3y \).

Here the rate of change of the unknown function \(y \) is proportional to the itself. This is the case in the study of population growth and radioactive decay.

Divide both sides by \(y \) to obtain \(y'/y = 3 \). Does that help? The left side is the derivative of \(\ln y \) (chain rule) and the right side is the derivative of \(3x \) so \(\ln y = 3x + C \) and that means \(y = e^{3x + C} = e^C e^{3x} \). Check: \(y' = 3e^C e^{3x} = 3y \).
An Application to Population Growth

Problem: The world population increased from 4.5 billion in 1980 to around 6.1 billion in 2000. Assuming that conditions remain the same, what will the population be in 2025?

Solution: We let \(y(t) \) = population at time \(t \) starting in 1980; i.e., \(y(0) = 4.5 \) (billion). We know that the rate of change of population is proportional to its current size so \(y' = ky \) and as we have just seen, the solution to this differential equation is

\[
y = y(0)e^{kt} = 4.5e^{kt}
\]

We can now use the fact that when \(t = 20 \) (the year 2000), the population is 6.1 to find the number \(k \) and then we can find \(y(45) \) which is the population in 2025.
We know $y = 4.5e^{kt}$ and $y(20) = 6.1$ so

$$6.1 = 4.5e^{20k} \quad \text{or} \quad 6.1/4.5 = e^{20k}$$

and taking the natural log of both sides, we have

$$\ln(6.1/4.5) = 20k$$

and it follows that

$$k = \frac{1}{20} \ln(6.1/4.5) \approx 0.0152$$

Therefore,

$$y \approx 4.5e^{0.0152t} \quad \text{and}$$

$$y(45) \approx 4.5e^{(0.0152)(45)} \approx 8.9 \text{ billion}$$
An Application to Carbon 14 Dating

Problem: Radioactive Carbon 14 has a half-life of 5,740 years. If a fallen tree from the eruption that formed Crater Lake has only 44% of its original Carbon 14, how old is Crater Lake?

Solution: We let $y(t) = \text{the amount of carbon 14 in the tree at time } t$ with $y(0) = \text{original amount}$. We know that the rate of change in the amount is proportional to the amount present so $y' = ky$ and as before

$$y = y(0)e^{kt}$$

We are not given $y(0)$ but since the half-life is 5,740 we can write

$$0.5y(0) = y(0)e^{5740k}$$

and taking the natural log of both sides, we have

$$\ln 0.5 = 5740 k$$

so

$$k = \frac{\ln 0.5}{5740}$$
So now our equation looks like

\[y = y(0)e^{\left(\frac{\ln 0.5}{5740}\right) t} \]

and we want to know the value of \(t \) when \(y = 0.44 \, y(0) \).

So set \(0.44 \, y(0) = y(0)e^{\left(\frac{\ln 0.5}{5740}\right) t} \) and take the log of both sides to obtain

\[\ln 0.44 = \left(\frac{\ln 0.5}{5740}\right) t \]

Now solve for \(t \)

\[t = \frac{(5740)(\ln 0.44)}{(\ln 0.5)} \approx 6,799 \text{ years} \]